Sistema de masa variable

Los cohetes, los cuales pierden una cantidad significativa de masa a medida que queman el combustible, son un ejemplo de un sistema de masa variable.

En Mecánica, un sistema de masa variable es un conjunto de materia cuya masa varía con el tiempo. La Segunda Ley de Newton no se puede aplicar directamente dado que sólo es válida para sistemas de masa constante.[1][2]​ Por lo tanto, la dependencia de la masa m respecto del tiempo se analizará tratando al sistema como si de uno cerrado se tratase; esto significa considerar un sistema que contenga tanto a la masa principal como a la masa variante. Al añadir un término que considera el momento de la masa que se adhiere o desprende, la ecuación general de movimiento de una masa variable (que expresa el cambio del momento respecto al tiempo) puede escribirse como:

Donde Fext es la fuerza neta externa ejercida en el sistema cerrado, vrel es la velocidad relativa de la masa que está escapando o ingresando con respecto al centro de masa del cuerpo, y v es la velocidad del cuerpo.[1]​ En la ingeniería aeroespacial, la cual estudia la mecánica de los cohetes, el término vrel se lo llama la velocidad efectiva de escape y se denomina como ve.[3]

Un error de concepto frecuente es que un sistema de masa variable puede describirse como la derivada respecto del tiempo del producto de la masa con la velocidad, ya que la fuerza neta externa es el cambio en el momento respecto del tiempo. Si bien este hecho no cambia, en un sistema abierto la variación del momento ya no puede describirse como el cambio en el producto de la masa con la velocidad, pues al hacerlo se estaría olvidando al impulso asociado a la variación de masa del sistema. Dado que estos sistemas, como el del cohete que pierde combustible y eyecta gases, no son sistemas cerrados y dado que la masa no se debe tratar como una variable en función del tiempo, la siguiente fórmula no es correcta:

La falacia de esta fórmula puede verse en que no respeta la Invariancia galileana la cual sostiene que un objeto de masa variable con F = 0 en un marco de referencia, tendrá F ≠ 0 en otro.

  1. a b Plastino, Angel R.; Muzzio, Juan C. (1992). «On the use and abuse of Newton's second law for variable mass problems». Celestial Mechanics and Dynamical Astronomy (Netherlands: Kluwer Academic Publishers) 53 (3): 227-232. Bibcode:1992CeMDA..53..227P. ISSN 0923-2958. doi:10.1007/BF00052611. Consultado el 30 de diciembre de 2011. 
  2. Basavaraju, G; Ghosh, Dipin (1 de febrero de 1985). Mechanics and Thermodynamics. Tata McGraw-Hill. pp. 162-165. ISBN 978-0-07-451537-2. 
  3. Benson, Tom. «Ideal Rocket Equation». NASA. Archivado desde el original el 7 de diciembre de 2014. Consultado el 30 de diciembre de 2011. 

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search